
A Map for Security Science

Fred B. Schneider*
Department of Computer Science

Cornell University
Ithaca, New York 14853

U.S.A.

*Funded by AFOSR, NICECAP, NSF (TRUST STC), and Microsoft.

1

Maps = Features + Relations

Features
– Land mass
– Route

Relationships
– Distance
– Direction

2

Map of Security (circa 2005)

Features:
Port Scan
Bugburg
Geekland
Bufferville
Malwaria
Root kit pass
Sploit Market
Valley of the
Worms
Sea Plus Plus
Sea Sharp
…

Reproduced courtesy Fortify Software Inc

3

Map of Security (circa 2015?)

Features:
Classes of attacks
Classes of policies
Classes of defenses

Relationships:
“Defense class D enforces

policy class P despite
attacks from class A.”

Attacks

Defenses Policies

4

Outline

Give examples to demonstrate:
– map features: -- policy, defense, attack classes
– relationships between these “features”

Discuss scope for term “security science”.
“If everybody is special, then nobody is.”

-Mr. Incredible
“Good” work in security might not be “security science”.

Give example and non-obvious open questions in
“security science.”

5

Oldspeak:

Security Features: Attacks

Attack: Means by which policy is subverted.
A threat exploits a vulnerability.
– Attacks du jour :

E.g. buffer overflow, format string, x-site scripting, …

– Threat models have been articulated:
E.g. insider, nation-state, hacker, ….
E.g. 10 GByte + 50 Mflops, …
Threat model Attacks?

6

Oldspeak:

Security Features: Policies

Policy: What the system should do; what
the system should not do:
– Confidentiality: Who is allowed to learn what?

– Integrity: What changes are allowed by system.
… includes resource utilization, input/output to environment.

– Availability: When must service be rendered.

Usual notions of “program correctness” are a
special case.

7

Oldspeak:

Security Features: Defenses

Defense Mechanism: Ensure that policies
hold. Example general classes include:
– Monitoring (reference monitor, firewall, …)
– Isolation (virtual machines, processes, sfi, …)
– Obfuscation (cryptography, automated diversity)

8

Oldspeak:

Security Features: Relationships

Attack ↔ Defense

Secure System Pragmatics:
Attacks exploit vulnerabilities.
– Vulnerabilities are unavoidable.

Assumptions are potential vulnerabilities.
– Assumptions are unavoidable.

… All non-trivial systems can be attacked.
– ? Can a threat of concern launch a successful attack ?

9

Classes of Attacks

Operational description:
– “Overflow an array to clobber the return ptr…”

Semantic characterization:
– A program…

RealWorld = System || Attack (Dolev-Yao, Mitchell)

– An input…
Causes deviation from a specification.
Causes different outputs in diverse variants.

10

Classes of Policies

System behavior t: an infinite trace
t = s0 s1 s2 s3 … si …

System property P: set of traces
P = { t | pred(t) }

System S: set S of traces (its behaviors).

System S satisfies property P: S ⊆ P

11

Safety and Liveness [Lamport 77]

Safety: Some “bad thing” doesn’t happen.
– Traces that contain irremediable prefix.

Liveness: Some “good thing” does happen.
– Prefixes that are not irremediable.

Thm: Every property is the conjunction of a safety
property and a liveness property.

Thm: Safety properties proved by invariance.

Thm: Liveness properties proved by well-foundedness

12

Safety and Liveness [Alpern+Schneider 85,87]

Safety: Some “bad thing” doesn’t happen.
– Proscribes traces that contain some irremediable prefix.

Liveness: Some “good thing” does happen.
– Prescribes that prefixes are not irremediable.

Thm: Every property is the conjunction of a safety property
and a liveness property.

Thm: Safety properties proved by invariance.

Thm: Liveness properties proved by well-foundedness.

13

Monitoring: Attack ↔ Defense ↔ Policy

Execution Monitoring (EM) [Schneider 2000]

Execution monitor:
– Gets control on every policy-relevant event
– Blocks execution if allowing event would violate policy
– Integrity of EM protected from subversion.

Thm: EM only enforces safety properties.
Examples of EM-enforceable policies:

Only Alice can read file F.
Don’t send msg after reading file F.
Requests processing is FIFO wrt arrival.

Examples of non EM-enforceable policies:
Every request is serviced
Value of x is not correlated with value of y.
Avg execution time is 3 sec.

14

Monitoring: Attack ↔ Defense ↔ Policy

New EM Approaches

Every safety property corresponds to an
automaton.

read

not read not send

□(read ⇒ □¬send)

15

Monitoring: Attack ↔ Defense ↔ Policy

Inlined Reference Monitor (IRM)

New approach to enforcing EM policies:
1. Automaton Pgm code (case statement)
2. Inline automaton into target program.

Relocates trust from pgm to reference monitor.

Application

Secure
application

Specialize

P”

P′

P
Policy

Insert

P

P

SASI
Compile

16

Monitoring: Attack ↔ Defense ↔ Policy

Proof Carrying Code

New approach to enforcing EM policies:
Code producer:

– Automaton A + Pgm S Proof S sat A
Code consumer:

– If A suffices for required security then check:
Proof S sat A

(Proof checking is easier than proof construction.)

Relocates trust from pgm and prover to proof checker.
Proofs more expressive than EM.

17

Monitoring: Attack ↔ Defense ↔ Policy

Proof Carrying Code

PCC and IRM…

Specialize

P”

P′

Insert

P

P

SASI
Compile

Application

P
Policy

Optimize
PCC

Application

Pr
Proof

18

Monitoring: Attack ↔ Defense ↔ Policy

Virtues of IRM

When mechanism inserted into the application ...
– Allows policies in terms of application abstractions.
– Pay only for what you need.
– Enforcement without context switches into kernel.
– Isolates state of enforcement mechanism.

Program

Kernel

RM

19

Security ≠ Safety Properties

Non-correlation: Value of L reveals nothing
about value of H.

Non-interference: Deleting cmds from H-users
cannot be detected by cmd exec by L-users.
[Goguen-Meseguer 82]

Properties, safety, liveness not expressive enough!

EM not powerful enough.

20

Hyper-Properties [Clarkson+Schneider 08]

Hyper-property: set of properties
= set of sets of traces

System S satisfies hyper-property HP: S∈HP

Hyper-property [P]: {P’ | P’⊆ P}

Note:
– (P∈HP and P’ ⊆ P) ⇒ HP not required.
– Non-interference is a HP.
– Non-correlation is a HP.

21

Hyper-Safety Properties

Hyper-safety HS: “Bad thing” is property M
comprising finite number of finite traces.
– Proscribes tracing containing irremediable

observations.

Thm: For safety property S, [S] is hyper-safety.
Thm: All hyper-safety are refinement closed.

Note:
– Non-interference is a HS.
– Non-correlation is a HS.

22

Hyper-Safety Applications

2SP: Safety property on program S composed with itself
(with variables renamed). [Terauchi+Aiken 05]

S; S’
2SP transforms information flow into a safety property!

K-safety: Safety property on program
SK: S || S’ || … || S”

K-safety is HS.

Thm: Any K-safety property of S is equivalent to a safety
property on SK.

23

Hyper-Liveness Properties

Hyper-liveness HL: Any finite set M of
finite traces has an augmentation that is
in HL.
Prescribes: observations are not irremediable.

Examples: possibility, statistical performance, etc.

Thm: Every HP is the conjunction of HS and HL.

24

Hyper Recap

Safety Properties ↔ EM enforceable:
New enforcement (IRM)

Properties not expressive enough:
Hyper-properties (-safety, -liveness)
K-safety (reduces proving HS to a prop).

Q: Verification for HS and HL?
Q: Refinement for HS and HL?
Q: Enforcement for HS and HL?

25

Obfuscation: Attack ↔ Defense ↔ Policy

Obfuscation: Goals and Options

Semantics-preserving random program rewriting…
Goals: Attacker does not know:

– address of specific instruction subsequences.
– address or representation scheme for variables.
– name or service entry point for any system service.

Options:
– Obfuscate source (arglist, stack layout, …).
– Obfuscate object or binary (syscall meanings, basic block

and variable positions, relative offsets, …).
– All of the above.

26

Obfuscation: Attack ↔ Defense ↔ Policy

Obfuscation Landscape [Pucella+Schneider 06]

Given program S, obfuscator computes morphs:
T(S, K1), T(S, K2), … T(S, Kn)

Attacker knows:
Obfuscator T
Input program S

Attacker does not know:
Random keys K1, K2, … Kn
… Knowledge of the Ki would enable attackers to automate
attacks!

Will an attack succeed against a morph?
– Seg fault likely if attack doesn’t succeed.

integrity compromise availability compromise.

27

Obfuscation: Attack ↔ Defense ↔ Policy

Successful Attacks on Morphs

All morphs implement the same interface.
– Interface attacks. Obfuscation cannot blunt attacks

that exploit the semantics of that (flawed) interface.
– Implementation attacks. Obfuscation can blunt

attacks that exploit implementation details.

Def. implementation attack: An input for which
all morphs (in some given set) don’t all produce
the same output.

28

Obfuscation: Attack ↔ Defense ↔ Policy

Effectiveness of Obfuscation

Ultimate Goal: Determine the probability
that an attack will succeed against a
morph?

Modest goal: Understand how effective
obfuscation is as compared with other
defenses?
– Obvious candidate: Type checking

29

Obfuscation: Attack ↔ Defense ↔ Policy

Type Checking as a Defense

Type checking: Process to establish that all
executions satisfy certain properties.
– Static: Checks made prior to exec.

• Requires a decision procedure

– Dynamic: Checks made as exec proceeds.
• Requires adding checks. Exec aborted if violated.

Probabilistic dynamic type checking: Some
checks are skipped on a random basis.

30

Obfuscation: Attack ↔ Defense ↔ Policy

Obfuscation versus Type Checking

Thesis: Obfuscation and probabilistic
dynamic type systems can “defend against”
the same attacks.

From “thesis” “theorem” requires fixing:
a language
a type system
a set of attacks

31

Obfuscation: Attack ↔ Defense ↔ Policy

Obfuscation approximates typing

Theorem: Type error signaled if and only if ressistible
attack relative to T() and keys K1, K2, …, Kn for type
systems:
– “pointer de-ref sanity” types.

Implied by usual notion of “strong typing”.
Is a stronger type system than necessary. E.g.

if x[i] = x[i] then skip
is not type-safe but is not affected by T.

– “tainting” type system (=info flow)
Better approximation than “pointer de-ref sanity” types.
Low integrity value: can vary from morph to morph

32

Obfuscation: Attack ↔ Defense ↔ Policy

Type Systems / Obfuscator Bad News

Theorem: There is no computable type system
that signals a type error iff attacks relative to
address obfuscation and some finite set of keys
K1, K2, …, Kn.

33

Obfuscation: Attack ↔ Defense ↔ Policy

Pros and Cons of Obfuscation

Type systems:
– Prevent attacks (always---not just probably)
– If static, they add no run-time cost
– Not always part of the language.

Obfuscation
– Works on legacy code.
– Doesn’t always defend.

34

Recap: Features + Relationships

Defined: Characterization of policy: hyper-policies
– Linked to semantics + orthogonal decomp

Relationship: Class of defense (EM) and class of
policies (safety):
– Provides account of IRM and PCC.

Relationship: Class of defense (obfusc) and class
of defense (type systems).
– Uses “reduction proof” and class of attacks

35

A Science?

Science, meaning focus on process:
– Hypothesis + experiments validation

Science, meaning focus on results:
– abstractions and models, obtained by

invention
measurement + insight

– connections + relationships, packaged as
theorems, not artifacts

Engineering, meaning focus on artifacts:
– discovers missing or invalid assumptions

Proof of concept; measurement
– discovers what are the real problems

36

A Security Science?

Address questions that transcend systems,
attacks, defenses:
Is “code safety” universal for enforcement?
Can sufficiently introspective defenses always be
subverted?
…

37

A Security Science?

SSR* seeking relationships:
Absolute security vs Risk Management
Prevention vs Accountability
– Role of Authentication + Authorization

Perfection vs Diversity
– Specification of behavior –vs-
– Independence wrt attacks

Enforcement vs Relocation of Trust

*SSR: Single Security Researcher

w
hen proposed

