

Modeling, prediction and diagnosis for network security

Alfred Hero University of Michigan

- 1. Network monitoring and tomography
- 2. Science of security: opportunities
- 3. Concluding remarks

1. Network monitoring and tomography

 Internally sensed network tomography (Treichler05, Rabbat06)

• End-point prediction and tracking(Justice06)

2. Science of security: opportunities

- Scientific method
 - Observation
 - Hypothesis
 - Prediction
 - Experiment
 - Evaluation

- Science of Security
 - Sparse, incomplete?
 - Model selection?
 - Baseline drift?
 - Observer effect?
 - Benchmarks?

Observation

- Challenge: Critical security breaches are covert, rare, and non-repeatable
 - Any set of observations will necessarily be sparse and incomplete
 - Persistent and pervasive multimodal monitoring impractical

- Information-driven sensor management
 - Plan-ahead learning with POMDP (Carin:06, Blatt06)
 - Q-learning for reactive targets (Kreucher:06)– Performance prediction (H07, Castanon08)
- ISNT applications (Rabbat08,Justice06), but more research needed
 - Necessary and sufficient sampling rate?
 - Distributed processing and inference?

-Scalable algorithms and approximations?

Hypothesis

 Challenge: infer stable models of attack and ambient behaviors that can be reliably tested

– Central question: how to discover hidden latent structure of partially observed variables?

- Statistical model selection: how many attack patterns are there and how to identify them?
- Unsupervised hypothesis generation
 - Bayesian factor analysis (West05)
 - Information driven PCA (FINE, IPCA) (Carter08_b)
 - Complexity filtering (Carter08_a)
 - Social networks of behavoir (Xu09)
- How to make these approaches scalable to whole network security applications?

Complexity filtering (Carter:08_a)

SocNet of SPAM harvestors (Xu:09)

Results from October 2006 using similarity in spam server usage (visualization created using Cytoscape)

ŀ

SocNet of SPAM harvestors (Xu:09)

Results from October 2006 colored by phishing level

ΙΝΟΛ ΤΟΩΩ

Prediction

Challenge: learn truly predictive and generalizable models that

- Track dynamic shifts over time or space
- Extract information from high dimension
- Integrate uncalibrated diverse data types

- Predictive anomaly detection
 - -Transductive learning (Scott08)
 - Geometric entropy minimization (H06)
- Flexible graphical/topological models
- How to make these methods scalable?
 - -decomposable version of Lakhina04's

PCA for whole-network diagnosis

Alfred Hero

NSF-IARPA SOS Workshop – Nov 2008

Dynamic dwMDS for Abilene (Patwari:05)

Figure 2: (a) Mean (•) and 1- σ uncertainty ellipse (- - -) of router maps from 2-Jan to 29-Jan. Maps during (b) port scan on 6-Jan 17:55 and (c) attack on 20-Jan 01:00, show router coordinates (•) connected (- -) to the mean (·) from (a), and shaded by error value e_i . All figures show Abilene backbone links (—).

Experiment

 Challenge: simulation relies on stale or speculative models while real-world data collection is difficult due to

- Disruption of infrastructure
- Unreliable ground truth
- Significant "observer effects"

- Adversarial experiment design approaches
 - Dynamic generalizations of adversarial classification (ACRE, Lowd&Meek06, Dalvi04) and greedy minimax (Kraus07)
 - RL w observer effect (Kreucher06, Murphy06)
- Design of experiments for medical clinical trials have similar constraints

Evaluation

- Challenge: establish reliable methods of online and offline performance prediction
 - Incomplete label information/ground truth
 - Curse of dimensionality
 - require order 1/e^p samples to determine the values of p experimental variables within error e

- Bayesian meta-analysis: what is posterior uncertainty of predicted estimation error?
- DOE benchmarking: what is theoretically attainable algorithm performance?
 - Coding and information theory
 - Error exponents, Fano, Rate-Distortion bounds
 - Tradeoffs between security and usability (H03)
 - Minimax, maximax and minimin performance prediction: function estimation and imaging (BickelRitov:90,KostolevTsybakov:93)

Alfred Hero

NSF-IARPA SOS Workshop – Nov 2008

3. Final remarks

- Developing a Science of Security is challenging.
- Leverage from other disciplines with high throughput data
 - Image reconstruction and tomography
 - Social networks and economic behavior models
 - Genetics, immunology, and epidemioogy
- Main open problems
 - Adversarial learning environment
 - Rapidly changing baseline
 - Data impoverishement
 - Scalable plan ahead sampling

Alfred Hero

NSF-IARPA SOS Workshop – Nov 2008