
Biology is the Science of Security

Stephanie Forrest
UNM and Santa Fe Institute
March, 2008

What can we learn from other fields?

• Experimental design

• How to conduct experiments and analyze results

• Quantitative methods

• PCA, ICA, nested models, species-abundance curves, phylogenetic tree
reconstruction, power law analysis. How to evaluate results based on
unfamiliar methods? Do the theorems provide insight?

• Architecture, mechanisms, and principles of other complex systems

• Study solutions that have been developed in other systems to problems
that are similar to those we want to solve

Experiments
	 seems obvious but ...

• Conducting repeatable experiments

• Articulate a clear hypothesis and design the simplest possible experiment.
Allows others to confirm results and test variations

• Public domain prototypes and data sets (overfitting issue)

• Careful comparisons and repeatability are surprisingly difficult

• Complex environments

• Results often depend heavily on data inputs

• Metrics that emphasize breadth of coverage and corner cases

Principles of biological computation

• Traditional approach to CS:

• Decomposability and modularity

• Explicit management of
exceptions and interactions

• Efficiency, correctness, and
optimality

• Lessons from biology:

• Survivability and evolvability

• Autonomy

• Robustness, disposable
components

• Adaptation and self repair

• Diversity

• The cost of getting big

Biological defense mechanisms
	 Applied to computation

• Immunology:

• Protect an individual (single host or a network) against network epidemics
and other forms of attack.

• Antivirus programs, intrusion-detection systems

• Sana Security Primary Response

• Autonomic responses, e.g., homeostasis:

• Tightly coupled low-level detection/response phases.

• pH and network (virus) throttling.

• HP’s Virus Throttle

Biological defense mechanisms
	 Applied to computation cont.

• Diversity:

• Genetic diversity leads to population-level robustness.

• Disrupt software monoculture using randomization and/or evolution.

• Microsoft Vista Address Space Randomization

• Epidemiology:

• Network-based control of viruses/worms.

• Focus on network topology (the epidemic threshold).

• Survivability and attack resistance (PGBGP---work in progress)

Other biological defense mechanisms
	 Still to be tapped

• The innate immune system

• Ecological interactions and evolutionary biology

• Malware ecology: Malware interactions, indicator species, etc.

• Automated bug repair using evolutionary methods

• Optimal levels of defense in depth

• Intracellular defenses and repair mechanisms

• RNAi

• Restriction enzymes

Overarching themes

• What level of abstraction is appropriate?

• Negative selection mechanism vs.

• Automated diversity

• What makes a computation biological or biologically inspired?

• Architecture, mechanism, functionality

• Biological principles are being discovered in bits and pieces

• Need a unified framework

Science envy?

• We may have made more progress than we realize

• Forcing attack vectors to evolve

• Why should we expect to solve the problem so that we never need to touch
it again?

• Biomedicine doesn’t, economics doesn’t

• No simple quantitative metrics for “health”; Indicators rather than metrics?

• Suggestion: “Accumulate knowledge in a systematic fashion”

• It’s not only about quantitative prediction (building intuitions, existence
proofs, critical regions)

Engineering practices
	 based on principles of biology

• Why do we need them?

• Evolution of the software ecosystem (software rot, malware)

• Dynamic, mobile, complex, and hostile environments

• Moore’s Law won’t rescue us

• Hallmarks

• Simple and generic

• Computationally and memory efficient

• Automatically self-tuning, distributable, diverse, and autonomous

