Biology is the Science of Security

Stephanie Forrest UNM and Santa Fe Institute March, 2008

What can we learn from other fields?

- Experimental design
 - How to conduct experiments and analyze results
- Quantitative methods
 - PCA, ICA, nested models, species-abundance curves, phylogenetic tree reconstruction, power law analysis. How to evaluate results based on unfamiliar methods? Do the theorems provide insight?
- Architecture, mechanisms, and principles of other complex systems
 - Study solutions that have been developed in other systems to problems that are similar to those we want to solve

Experiments seems obvious but ...

- Conducting repeatable experiments
 - Articulate a clear hypothesis and design the simplest possible experiment. Allows others to confirm results and test variations
 - Public domain prototypes and data sets (overfitting issue)
- Careful comparisons and repeatability are surprisingly difficult
 - Complex environments
 - Results often depend heavily on data inputs
 - Metrics that emphasize breadth of coverage and corner cases

Principles of biological computation

- Traditional approach to CS:
 - Decomposability and modularity
 - Explicit management of exceptions and interactions
 - Efficiency, correctness, and optimality

- Lessons from biology:
 - Survivability and evolvability
 - Autonomy
 - Robustness, disposable components
 - Adaptation and self repair
 - Diversity
 - The cost of getting big

Biological defense mechanisms Applied to computation

• Immunology:

- Protect an individual (single host or a network) against network epidemics and other forms of attack.
- Antivirus programs, intrusion-detection systems
- Sana Security Primary Response
- Autonomic responses, e.g., homeostasis:
 - Tightly coupled low-level detection/response phases.
 - pH and network (virus) throttling.
 - HP's Virus Throttle

Biological defense mechanisms Applied to computation cont.

• Diversity:

- Genetic diversity leads to population-level robustness.
- Disrupt software monoculture using randomization and/or evolution.
- Microsoft Vista Address Space Randomization
- Epidemiology:
 - Network-based control of viruses/worms.
 - Focus on network topology (the epidemic threshold).
 - Survivability and attack resistance (PGBGP---work in progress)

Other biological defense mechanisms Still to be tapped

- The innate immune system
- Ecological interactions and evolutionary biology
 - Malware ecology: Malware interactions, indicator species, etc.
 - Automated bug repair using evolutionary methods
 - Optimal levels of defense in depth
- Intracellular defenses and repair mechanisms
 - RNA_i
 - Restriction enzymes

Overarching themes

- What level of abstraction is appropriate?
 - Negative selection mechanism vs.
 - Automated diversity
- What makes a computation *biological or biologically inspired?*
 - Architecture, mechanism, functionality
- Biological principles are being discovered in bits and pieces
 - Need a unified framework

Science envy?

- We may have made more progress than we realize
 - Forcing attack vectors to evolve
- Why should we expect to *solve the problem* so that we never need to touch it again?
 - Biomedicine doesn't, economics doesn't
 - No simple quantitative metrics for "health"; Indicators rather than metrics?
- Suggestion: "Accumulate knowledge in a systematic fashion"
- It's not only about quantitative prediction (building intuitions, existence proofs, critical regions)

Engineering practices based on principles of biology

- Why do we need them?
 - Evolution of the software ecosystem (software rot, malware)
 - Dynamic, mobile, complex, and hostile environments
 - Moore's Law won't rescue us
- Hallmarks
 - Simple and generic
 - Computationally and memory efficient
 - Automatically self-tuning, distributable, diverse, and autonomous

