

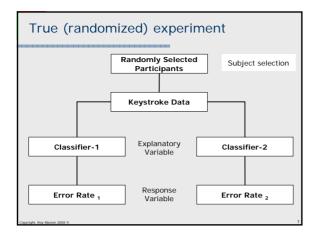
Explaining causal mechanisms

Science of security - II

- Science ...
- ... comprises knowledge covering general truths, i.e., the operation of general laws.
- ... deals with objectively measurable phenomena
- ... predicts ... by virtue of having laws ...
- ... generalizes, largely by asking questions about the conditions under which the laws apply.
- The discovery of those laws is usually done by experiment.

Charge to the speakers ...

- What makes a good security experiment?
- What can and cannot be learned about security through experiments?
- Should there be better connections between formal and experimental security work?
- How can we improve the state-of-the-art for computer security experiments?

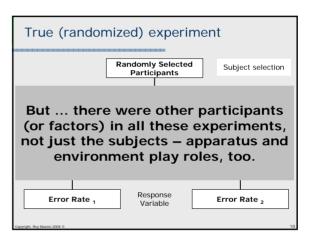

(For want of time, I will address only the first and last of these.)

Charge to the speakers ...

- What makes a good se ty experiment?
- What can and cannot be learned about security through experiments?
- Should there be better connections between . formal and experimental security work?
- How can we improve the state-of-the-art for computer security experiments?

What is an experiment?

- Experiment: A procedure in which an intervention is deliberately introduced to observe its effects.
- There are several types of experiment:
 - True experiment: random assignment to the treatment or alternative condition.
 - <u>Quasi-experiment</u>: not assigned randomly.
 - Natural experiment: Not really an experiment; the cause usually cannot be manipulated, e.g., in a study contrasting a naturally occurring event such as before and after an earthquake.
 - Correlational / observational experiment: a study that simply observes the size and direction of a relationship among variables.



What constitutes a GOOD experiment?

- Validity
 - Internal
 - External
- Control (of bias/error; eliminate alternative explanations)
- Repeatability
- Reliability
- Reporting (including all of the method)
- Asking the right guestions

Example from keystroke dynamics First papers were published in 1978-1980. What question was asked? · Can you distinguish among users on the basis of their typing rhythms? Which classifier works best? Typical experiment – N users type self-selected passwords; distinguish among users with classifier After 30 years ... answers are still unsatisfying. A different, perhaps more relevant, question ... Do people have unique typing rhythms?

Typical experiment – similar, but tightly controlled

A few influential factors ...

- Different (and different-length) passwords
- Self-selected (not assigned) passwords
- No timing calibrations (one study -- 14% bad timestamps); resolution probably inadequate
- Different numbers of repetitions of passwords
- Noise from network, applications, timing, operating system, keyboard, logging
- Dropped subjects (questionable rationales)
- Practiced vs. unpracticed subjects (practice levels)
- Idiosyncratic or unknown outlier treatment Results may be due to user typing rhythms, or to various other factors (same as intrusion detection)

Moral

- Security experiments can be good experiments, but they need to ...
 - ask the right questions
 - be well designed
 - be valid
 - be repeatable
 - be generalizable
 - be explanatory
 - be reported thoroughly
- Otherwise, why bother?

Charge to the speakers ...

- What makes a good security experiment?
- What can and cannot be learned about security through experiments?
- Should there be better connections between formal and experimental security work?
- How can we improve the state-of-the-art for computer security experiments?

State of the art ???

First ...

- It's not the state of the art that's in trouble.
- The state of the art is fine.
- It's the state of the practice that's in trouble.

Second ...

If there's an art, it lies in asking good questions, and in devising valid experiments to answer them.

But ...

Perhaps we can improve by looking at current impediments to good experimentation ... and removing or mitigating them.

Impediments (in no particular order)

Community

- There is no community collective that shares in common problems, methods, experiments and data, as in biology, medicine, epidemiology, cognitive science, physics, etc.
- Communities are not supported not as communities, and not as long-term research thrusts, with continuity.
- Single laboratories can't do everything invent the instruments, create the paradigms, run the experiments, do the analyses, etc. It's too much for one lab ... especially in 18-36 months.
- Free and easy access to other research
 - Too much literature, too spread out, too hard to find, and too expensive
 - No public-access model, like NIH

Impediments (in no particular order)

Incentive

- Rewards are for novelty and silver bullets shooting the moon
- Few rewards for careful experimentation
- No rewards for replication
- Disincentives for careful and thorough reporting of methods · Although the culture seldom sees the need for thorough reporting Although the second anyway.
 Note: the method is more important than the result
- Referee community rejects as useless and boring

Culture

- The security culture does not embrace fully rigorous measurement and experimentation
- They say they do, but when it comes down to it, they don't.
- The culture rejects serious efforts as being too hard, the problems are too big, too many parameters, too complex, etc.
- These are excuses; other fields have the same issues
- We may try, and fail, and try again; but not trying is failing.

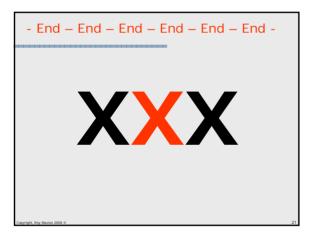
Impediments (in no particular order)

Infrastructure

- Barriers to entry are high (too high)
- We lack shared testbeds, experimental apparatus and experimental paradigms for gathering or generating data. What about Geni, DETER, and NCR?
- We lack shared benchmark data sets (with calibrated ground truth, and meta-data). What about UNM, Darpa-98/99, Predict ?
- We lack a shared analytical framework.
 - · Shared tools, like R for statistics
 - · Common scripts for data generation or handling
 - · Common mechanism for exact replication of experiments

Impediments (in no particular order)

Literacy


- The community lacks the background and knowledge to conduct proper experimentation
- Unawareness of the fundamentals of experimentation, e.g., internal or external validity, control of confounds, elimination of alternative explanations, or experimental design
- There are few educational programs in experimentation.
- Wrong questions
- Can we build a better gizmo ... vs ...
 - Why is the new gizmo better, and how does it generalize?
 - ... or, what do the errors reveal?
 - We need insight, not just demonstrations.

What we need right now

- Support for community effort; continuity
- Shared benchmark data
- Shared methodologies
- Shared instrumentation
- Good scientific questions
- Good reporting practices in the literature; start with, at least, a complete methods section.
- Cooperative referees who won't dis good reporting
- Reproducibility/replicability
- Validity
- Operational definitions
- Education at the undergrad and grad levels; maybe corporate, too
- A shift in the culture

Charge to the speakers ... summary

- What makes a good security experiment?
 Look at what makes a good experiment.
 Need education.
- What can and cannot be learned about security through experiments?
 - Depends on the questions being asked.
 Should there be better connections between
- formal and experimental security work?
 Yes, of course.
- How can we improve the state-of-the-art for computer security experiments?
 - Remove or mitigate impediments.
 - Change the culture.

