Modeling, prediction and diagnosis for network security

Alfred Hero
University of Michigan

1. Network monitoring and tomography
2. Science of security: opportunities
3. Concluding remarks
1. Network monitoring and tomography

• Internally sensed network tomography (Treichler05, Rabbat06)

• End-point prediction and tracking (Justice06)
2. Science of security: opportunities

• Scientific method
 – Observation
 – Hypothesis
 – Prediction
 – Experiment
 – Evaluation

• Science of Security
 – Sparse, incomplete?
 – Model selection?
 – Baseline drift?
 – Observer effect?
 – Benchmarks?
Observation

• Challenge: Critical security breaches are covert, rare, and non-repeatable
 – Any set of observations will necessarily be sparse and incomplete
 – Persistent and pervasive multimodal monitoring impractical
Cross-fertilizations

• Information-driven sensor management
 – Plan-ahead learning with POMDP (Carin:06, Blatt06)
 – Q-learning for reactive targets (Kreucher:06)
 – Performance prediction (H07, Castanon08)

• ISNT applications (Rabbat08, Justice06), but more research needed
 – Necessary and sufficient sampling rate?
 – Distributed processing and inference?
 – Scalable algorithms and approximations?
Hypothesis

• Challenge: infer stable models of attack and ambient behaviors that can be reliably tested

– Central question: how to discover hidden latent structure of partially observed variables?
Cross-fertilizations

• Statistical model selection: how many attack patterns are there and how to identify them?

• Unsupervised hypothesis generation
 – Bayesian factor analysis (West05)
 – Information driven PCA (FINE, IPCA) (Carter08_b)
 – Complexity filtering (Carter08_a)
 – Social networks of behaviour (Xu09)

• How to make these approaches scalable to whole network security applications?
Complexity filtering
(Carter:08_a)

Intrinsic dimension estimator

Abilene Netflow data
(Total number packets)

Alfred Hero
SocNet of SPAM harvestors (Xu:09)

Results from October 2006 using similarity in spam server usage
(visualization created using Cytoscape)
SocNet of SPAM harvestors (Xu:09)

Results from October 2006 colored by phishing level
Prediction

• Challenge: learn truly predictive and generalizable models that
 – Track dynamic shifts over time or space
 – Extract information from high dimension
 – Integrate uncalibrated diverse data types
Cross-fertilizations

• Predictive anomaly detection
 – Transductive learning (Scott08)
 – Geometric entropy minimization (H06)
• Flexible graphical/topological models
• How to make these methods scalable?
 – decomposable version of Lakhina04's PCA for whole-network diagnosis
Dynamic dwMDS for Abilene
(Patwari:05)

Figure 2: (a) Mean (●) and 1-σ uncertainty ellipse (---) of router maps from 2-Jan to 29-Jan. Maps during (b) port scan on 6-Jan 17:55 and (c) attack on 20-Jan 01:00, show router coordinates (●) connected (---) to the mean (○) from (a), and shaded by error value e_i. All figures show Abilene backbone links (—).
Experiment

• Challenge: simulation relies on stale or speculative models while real-world data collection is difficult due to
 – Disruption of infrastructure
 – Unreliable ground truth
 – Significant “observer effects”
Cross-fertilizations

• Adversarial experiment design approaches
 – Dynamic generalizations of adversarial classification (ACRE, Lowd&Meek06, Dalvi04) and greedy minimax (Kraus07)
 – RL w observer effect (Kreucher06, Murphy06)

• Design of experiments for medical clinical trials have similar constraints
Evaluation

• Challenge: establish reliable methods of on-line and offline performance prediction
 – Incomplete label information/ground truth
 – Curse of dimensionality
 • require order $1/e^p$ samples to determine the values of p experimental variables within error e
Cross-fertilizations

- Bayesian meta-analysis: what is posterior uncertainty of predicted estimation error?
- DOE benchmarking: what is theoretically attainable algorithm performance?
 - Coding and information theory
 - Error exponents, Fano, Rate-Distortion bounds
 - Tradeoffs between security and usability (H03)
 - Minimax, maximax and minimin performance prediction: function estimation and imaging (BickelRitov:90,KostolevTsybakov:93)
3. Final remarks

• Developing a Science of Security is challenging.
• Leverage from other disciplines with high throughput data
 – Image reconstruction and tomography
 – Social networks and economic behavior models
 – Genetics, immunology, and epidemiology
• Main open problems
 – Adversarial learning environment
 – Rapidly changing baseline
 – Data impoverishment
 – Scalable plan ahead sampling