Biology is the Science of Security

Stephanie Forrest
UNM and Santa Fe Institute
March, 2008
What can we learn from other fields?

- Experimental design
 - How to conduct experiments and analyze results

- Quantitative methods
 - PCA, ICA, nested models, species-abundance curves, phylogenetic tree reconstruction, power law analysis. How to evaluate results based on unfamiliar methods? Do the theorems provide insight?

- Architecture, mechanisms, and principles of other complex systems
 - Study solutions that have been developed in other systems to problems that are similar to those we want to solve
Experiments seems obvious but ...

- Conducting repeatable experiments
 - Articulate a clear hypothesis and design the simplest possible experiment. Allows others to confirm results and test variations
 - Public domain prototypes and data sets (overfitting issue)
- Careful comparisons and repeatability are surprisingly difficult
 - Complex environments
 - Results often depend heavily on data inputs
 - Metrics that emphasize breadth of coverage and corner cases
Principles of biological computation

• Traditional approach to CS:
 • Decomposability and modularity
 • Explicit management of exceptions and interactions
 • Efficiency, correctness, and optimality

• Lessons from biology:
 • Survivability and evolvability
 • Autonomy
 • Robustness, disposable components
 • Adaptation and self repair
 • Diversity
 • The cost of getting big
Biological defense mechanisms
Applied to computation

- **Immunology:**
 - Protect an individual (single host or a network) against network epidemics and other forms of attack.
 - Antivirus programs, intrusion-detection systems
 - Sana Security *Primary Response*

- **Autonomic responses, e.g., homeostasis:**
 - Tightly coupled low-level detection/response phases.
 - pH and network (virus) throttling.
 - *HP’s Virus Throttle*
Biological defense mechanisms
Applied to computation cont.

• Diversity:
 • Genetic diversity leads to population-level robustness.
 • Disrupt software monoculture using randomization and/or evolution.
 • Microsoft Vista Address Space Randomization

• Epidemiology:
 • Network-based control of viruses/worms.
 • Focus on network topology (the epidemic threshold).
 • Survivability and attack resistance (PGBGP---work in progress)
Other biological defense mechanisms
Still to be tapped

- The innate immune system

- Ecological interactions and evolutionary biology
 - Malware ecology: Malware interactions, indicator species, etc.
 - Automated bug repair using evolutionary methods
 - Optimal levels of defense in depth

- Intracellular defenses and repair mechanisms
 - RNAi
 - Restriction enzymes
Overarching themes

- What level of abstraction is appropriate?
 - Negative selection mechanism vs.
 - Automated diversity
- What makes a computation *biological or biologically inspired*?
 - Architecture, mechanism, functionality
- Biological principles are being discovered in bits and pieces
 - Need a unified framework
Science envy?

• We may have made more progress than we realize
 • Forcing attack vectors to evolve

• Why should we expect to solve the problem so that we never need to touch it again?
 • Biomedicine doesn’t, economics doesn’t
 • No simple quantitative metrics for “health”; Indicators rather than metrics?

• Suggestion: “Accumulate knowledge in a systematic fashion”

• It’s not only about quantitative prediction (building intuitions, existence proofs, critical regions)
Engineering practices based on principles of biology

- Why do we need them?
 - Evolution of the software ecosystem (software rot, malware)
 - Dynamic, mobile, complex, and hostile environments
 - Moore’s Law won’t rescue us

- Hallmarks
 - Simple and generic
 - Computationally and memory efficient
 - Automatically self-tuning, distributable, diverse, and autonomous